
COS 220 Spring 2023 Midterm Practice 1 25 minutes; 25 pts.; 7 questions; 3 pgs. 2023-04-07 11:05 a.m.

© 2023 Sudarshan S. Chawathe

Name:

Solutions

1. (1 pt.)

◦ Read all material carefully.
◦ If in doubt whether something is allowed, ask, don’t assume.
◦ You may refer to your books, papers, and notes during this test.
◦ E-books may be used subject to the restrictions noted in class.
◦ Computers are not permitted, except when used strictly as e-books or for viewing

ones own notes.
◦ Network access of any kind (cell, voice, text, data, ...) is not permitted.
◦ Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
◦ Use class and textbook conventions for notation, algorithmic options, etc.
◦ Do not attach or remove any pages.

Write your name in the space provided above.
Do not write on this page below this point.

2. (2 pts.) Provide a single C++ statement that defines a C++ STL vector, named v5, of
five unsigned integers and initializes it to contain the elements (in index order): 3, 1,
4, 1, 5.

AO vector<unsigned int> v5 {3, 1, 4, 1, 5};

3. (2 pts.) Provide a single C++ statement that prints, to standard output, the number
of elements (items) in a C++ STL vector named howMany, whose elements are of type
float.

AO std::cout << howMany.size();

4. (2 pts.) Provide a single C++ statement that declares a C++ STL vector, named hislah,
containing three elements of type char, and initializes it to contain the elements (char-
acters, in index order): y, e, and s.

AO vector<char> hislah ’y’, ’e’, ’s’;

5. (2 pts.) Provide a single C++ statement that adds the character ! (exclamation mark)
as the fourth element of the vector of Question 4.

AO hislah.push_back(’!’);

6. (2 pts.) Provide a single C++ statement that reverses (undoes) the change made by
Question 5 (that is, removes the fourth element added there).

AO hislah.pop_back();

1



7. (14 pts.) Provide well-formatted source code of a complete C++ program that

(a) Defines a function rot vec that takes a single vector (of arbitrary length) as
argument and that cyclically rotates its elements to the left by one position (so
that the new item at index 0 is the one previously at index 1, the new one at
index 1 is the one previously at index 2, etc., and the new one at the last position
is the one originally at index 0).

(b) Uses the above function in the main function with a suitably defined vector to
illustrate its operation by printing the vector’s elements before and after the
function is invoked.

Poorly formatted, messy, or otherwise hard to read code will result in very
substantial loss of points. Explain your answer briefly, especially to qualify for
partial credit.

AO Note: This answer is much, much more detailed than needed because it incorporates
some suggestions/questions raised in class.

1 #include <vector > // needed for using STL vector

2 #include <iostream > // needed for cout etc.

3

4 using namespace std; // convenience , else std::cout etc.

5

6 /*

7 Cyclic -rotates left the elements of v.

8

9 In response to a Q in class: It is very important to have the &

10 below so that v is a reference argument instead of the default

11 (without &) which is a value argument. In the latter case , what

the

12 function would get would be a copy of the vector from the code that

13 calls it , so all its modifications would be made on that copy and

14 not on the original one as needed.

15 */

16 void rot_vec(vector <int > & v) {

17 int len = v.size();

18 if (len > 1) { // else nothing to be done

19 int v0 = v[0]; // save v[0] and then assign each element its next

one

20 for(int i = 0; i < len - 1; i++) {

21 v[i] = v[i+1];

22 }

23 v[len - 1] = v0; // set last element to saved v0

24 }

25 }

26

27 /*

28 To illustrate the importance of the & noted above , here is an

almost

29 identical version of the function , the only difference being the

30 name and the lack of &. As the code below illustrates , it does not

31 change anything in the vector given to it by code that calls it.

2



32 */

33 void rot_vec_noop(vector <int > v) {

34 int len = v.size();

35 if (len > 1) { // else nothing to be done

36 int v0 = v[0]; // save v[0] and then assign each element its next

one

37 for(int i = 0; i < len - 1; i++) {

38 v[i] = v[i+1];

39 }

40 v[len - 1] = v0; // set last element to saved v0

41 }

42 }

43

44 int main() {

45 vector <int > d = {3, 1, 4, 1, 5, 9}; // sample vector

46 for(auto elem : d) cout << elem << " "; // initial state

47 cout << endl;

48 rot_vec(d); // rotate it

49 for(auto elem : d) cout << elem << " "; // changed state

50 cout << endl;

51 rot_vec(d); // rotate it again

52 for(auto elem : d) cout << elem << " "; // changed state

53 cout << endl;

54 rot_vec_noop(d); // does not change d; a no -op in that sense.

55 for(auto elem : d) cout << elem << " "; // changed state

56 cout << endl;

57 return 0;

58 }

3


