
COS 301 Spring 2023 Midterm Exam 1 65 minutes; 65 pts.; 5 questions; 4 pgs. 2023-02-28 09:35 a.m.

© 2023 Sudarshan S. Chawathe

Name:

Solutions

1. (1 pt.)

◦ Read all material carefully.
◦ If in doubt whether something is allowed, ask, don’t assume.
◦ You may refer to your books, papers, and notes during this test.
◦ E-books may be used subject to the restrictions noted in class.
◦ Computers (including smart phones, tablets, etc.) are not permitted, except

when used strictly as e-books or for viewing ones own notes.
◦ Network access of any kind (cell, voice, text, data, ...) is not permitted.
◦ Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
◦ Use class and textbook conventions for notation, algorithmic options, etc.

Write your name in the space provided above.

2. (19 pts.) Consider the JCoCo virtual machine running the following JCoCo assembly
language program. Depict the state of the operand stack after each instruction. State
any output produced by the program. Provide brief explanations to qualify for better
partial credit. Reminder: Use of computers is not permitted. Running the program
using coco or similar is not allowed.

1 Function: main/0

2 Constants: 2, 3, 7, None

3 Locals: my, name , is

4 Globals: print

5 BEGIN

6 LOAD_CONST 0 [2]

7 STORE_FAST 0 [] my=2

8 LOAD_FAST 0 [2]

9 LOAD_FAST 0 [2, 2]

10 LOAD_FAST 0 [2, 2, 2]

11 BINARY_MULTIPLY [4, 2]

12 STORE_FAST 1 [2] name=4

13 LOAD_FAST 1 [4, 2]

14 LOAD_FAST 1 [4, 4, 2]

15 LOAD_CONST 1 [3, 4, 4, 2]

16 BINARY_MODULO [1, 4, 2]

17 LOAD_CONST 2 [7, 1, 4, 2]

18 BINARY_SUBTRACT [-6, 4, 2]

19 STORE_FAST 2 [4, 2] is=-6

20 LOAD_FAST 2 [-6, 4, 2]

21 LOAD_FAST 0 [2, -6, 4, 2]

22 LOAD_FAST 1 [4, 2, -6, 4, 2]

1

23 BINARY_TRUE_DIVIDE [0.5, -6, 4, 2]

24 LOAD_FAST 2 [-6, 0.5, 7, 4, 2]

25 BINARY_MULTIPLY [-3.0, -6, 4, 2]

26 LOAD_GLOBAL 0 [print , -3.0, -6, 4, 2]

27 ROT_TWO [-3.0, print , -6, 4, 2]

28 CALL_FUNCTION 1 [None , -6, 4, 2]

29 POP_TOP [-6, 4, 2]

30 LOAD_CONST 3 [None , -6, 4, 2]

31 RETURN_VALUE

32 END

AOThe program prints “-3.0” as output. The column on the right above depicts the
stack as a list with the top of stack leftmost.

3. (15 pts.) Provide a complete JCoCo assembly language program that reads an integer
n from standard input and prints the value of n4 (the input number raised to the fourth
power) on standard output. Explain why your program is correct.

AOThe first three instructions push three built-in functions onto the stack, in reverse
order of their later invocations: print, int, and input. The string “n: ” as argument for
the input function is pushed next, followed by calling that function. This results in the
string read from stdin to appear on the top of the stack, replacing the earlier top two
entries. The int function is called next with this string, giving an integer value on the
top of the stack, replacing the previous int function object and the string argument.
The exponentiation computation is performed next, after loading the constant 4, giving
n4 on the top of the stack. Finally, the print function is invoked (which now appears
just below n4 in the stack. [Grading note: There are several other correct answers.
No points are lost if the input function is invoked with 0 arguments (no prompt;
supported by Python but not by JCoCo). Only a small points deduction for missing
the int function since that is a detail that is easy to miss.]

1 Function: main/0

2 Constants: "n: ", 4

3 Globals: input , int , print

4 BEGIN

5 LOAD_GLOBAL 2

6 LOAD_GLOBAL 1

7 LOAD_GLOBAL 0

8 LOAD_CONST 0

9 CALL_FUNCTION 1

10 CALL_FUNCTION 1

11 LOAD_CONST 1

12 BINARY_POWER

13 CALL_FUNCTION 1

14 RETURN_VALUE

15 END

2

4. (15 pts.) Provide a context-free grammar (CFG) for parsing lists in the format used by
Homework HW01. The grammar should be designed to accept a single list (of arbitrary
length) in that format, and nothing else. Be sure to use exactly the format specified
in the homework. Explain why your CFG is correct (why it accepts all valid lists and
also why it accepts nothing else).

AO[There are several correct answers.] In the following grammar, the nonterminal expr
denotes expressions as defined by the basic calculator. So, in particular, it implies a
rule expr→ NUMBER.

list → ()

list → (expr ,)

list → (expr , expr exprsfx)

exprsfx → ε

exprsfx → ,

exprsfx → , expr exprsfx

5. (15 pts.) Provide (1) leftmost derivations, (2) parse trees, and (3) abstract
syntax trees for the following input (sentence) using the grammar of Question 4:

(3, 1, 4)

AOThe following uses abbreviations L, E, S, and N for list, expr, exprsfx, and
NUMBER, respectively.

L ⇒ (E , E S)

⇒ (N , E S)

⇒ (3 , E S)

⇒ (3 , N S)

⇒ (3 , 1 S)

⇒ (3 , 1 , E S)

⇒ (3 , 1 , N S)

⇒ (3 , 1 , 4 S)

⇒ (3 , 1 , 4)

The leftmost tree below is the parse tree corrsponding to the above derivation. There
are multiple correct answers for the abstract syntax tree based on how a list is de-
fined/interpreted by the language being parsed. Two are depicted here to the right of
the parse tree. The first is based on a flat interpretation of lists while the second uses
a sequence of Lisp-like cons operators (corresponding to commas in Python).

3

L

(E , E S)

N N , E S

3 1 N ’’

4

L

(3 , 1 , 4)

(3

,

,)

1 ,

4 ’’

4

