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A strong node sequence for a directed graph G = (N, A) is a sequence of nodes containing
every cycle-free path of G as a subsequence. A weak node sequence for G is a sequence of nodes
containing every basic path in G as a subsequence, where a basic path n,, n.,. .., n, is a path from
n, to n, such that no proper subsequence is a path from n, to n,. (Every strong node sequence for
G is a weak node sequence for G.) Kennedy has developed a global program data flow analysis
method using node sequences. Kwiatowski and Kleitman have shown that any strong node
sequence for the complete graph on n nodes must have length at least n* — O(n™**), for arbitrary
positive +. Every graph on n nodes has a strong sequence of length n* —2n + 4, so this bound is
tight to within O(n™**"). However, the complete graph on n nodes has a weak node sequence of
length 2n — 1. In this paper, we show that for infinitely many n, there is a reducible flow graph G
with n nodes (all with in-degree and out-degree bounded by two) such that any weak node
sequence for G has length at least $log; n — O(nloglog n). Aho and Uliman have shown that
every reducible flow graph has a strong node sequence of length O(n log: n): thus our bound is
tight to within a constant factor for reducible graphs. We also show that for infinitely many n,
there is u (non-reducible) flow graph H with n nodes (all with in-degree and out-degree bounded
by two). such that any weak node sequence for H has length at least cn’, where ¢ is a positive
constant  This bound, too, is tight to within a constant factor.

-

1. Reducible flow graphs with long node sequences

Let G = (N, A)be adirected graph. If s € N, G is a flow graph with start node s if
there is a puth from s to any node in G. A flow graph G with start node s is
reducible [2] f it can be reduced, by a sequence of applications of the following two
transformations, to the graph ({s},9).

* The Resean h of the second author was partially supported by National Science Foundation Grant
GI-35604XT. 1. a Miller Research Fellowship at University of California; and by National Science
Foundation Gr:nt DCR72-03752 A02 at Stanford University.
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T,: Delete a loop (edge of the form (v, v)) from G.

Tz: If (v, w) is the only edge of the form (x,w) and w# s, delete w and all
incident edges from G. For each deleted edge of the form (w, y) such that (v, y) is
not an edge of G, add (v, y) as an edge of G.

We construct a family of reducible flow graphs G(i, k) for i =1, k =1, which
have long weak node sequences. Each G(j, k) will have a distinguished start node
s(i, k) and a distinguished finish node f(i, k). Let G(i,k)=(N(i, k), A(i, k)) be
defined recursively by the following rules:

N, k)y={s(L.k)}, A(l,k)=0, f(1,k)=s(1,k),
NG +1,k)=(N(i, k)x{1,2})
UlsGi+1,k), 1+ 1, k), u(i +1,k), v(i + 1, k), w(i + 1, k)}
U{x(i+1,k,j) isj<sk},
AW+ LK) ={((3. ) (z): (. 2)EAGK).jE{L,2}}
U{(s(i+1,k),(s(i, k), 1)), (s, k), 1), 1 (i + 1, k)),
U+ L k), u(i+ 1, k), ((fG k), 1), u(i +1,k)),
((F(i, k), 1), v(i + 1, k), (i + 1, k), (s(i, ), 2)),
(f(i, k),2), w(i +1,k)), ((f(i, k), 2), s(i + 1, k),
(oG +1,k), x(i + 1,k 1)), (w(i + 1, k), x(i + 1,k 1))}
U{(x(i + 1,k j),x(i+ 1k, j+1)): 1=<j <k},
fli+1,k)y=x(i+1,kk).

Fig. 1 illustrates G(i + 1, k), which is formed by appropriately combining two
copies of G (i, k).

Lemma 1.1. Foreach i and k, all vertices in G(i, k) have in-degree and out-degree
at most two, s(i. k) has in-degree and out-degree at most one, and f(i, k) has
out-degree zero.

-

Proof. Easy by induction on i.
l.emma 1.2. For each i and k, G(i, k) is a reducible flow graph.

Proof. Itiseasy to prove by induction on i that every vertex in G (i, k) is reachable
from s(i,k). We prove by induction on i that G(j k) is reducible. G(1,k) is
reducible by definition. Suppose G (i, k) is reducible. Then G(i +1,k) can be
reduced in the following way: Reduce the first copy of G(i, k) in G(i + 1, k) to the
single node (s(i. k), 1). Reduce the second copy of G(i,k) in G(i +1,k) to the
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single node (s (i, k), 2). Delete the following nodes in order using T, applying T, to
remove loops as they are created:

X(i+ 1L,k k), x(i + 1Lk k—1). . x(i + Lk2),w(i + 1,k),v(i +1,k),
0+ 1,k), (s(i k), 1), u(i + 1.k ), (s(i, k), 2),x (i + 1, k, 1).
This reduces G(i +1,k) to ({s(i + 1, k). 9).
Let n(i,k)=|N(i, k)| and a(i,k)=1A(i, k)|. The following equations follow
from the definitions of N(i, k) and A (i. k):
n(Lk)=1, n@i+1,k)=2n(i.k)+(5+k),
a(l,k)=0, a(i+1,k)=2a(ik)+©+k).

Lemma 1.3. n(ik)=(6+k)2™" = (5+ k) and a(i, k)= (9+ k)2""' = (9 + k).
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Proof. By induction:
n(l)=1=6+k)-2°-(S+k),
n(i+1)=2n( k)+(S+k)
=2[(6+ k2T - (5+K))+(5+K)
=(6+k)2' —(5+k);
and similarly for a(i k).

Lemma 1.4. In G(i. k) there is a basic path p(i, k) from s(i, k) to f(i, k) containing
m(i, k)=@+ k)2 = (3+ k) nodes.

Proof. Define p(i, k) recursively as follows:
p(1,k)=s(1.k),
p(i+1,k)y=s(i~+ Lk), p(i, k) x {1}, u(i + 1, k), pi, k)< 2}, w(i +1,k),
x(i+ 1Lk D), x(i+1,k2),..,x(i+ 1.k, k)

Note: p(i,k) is a sequence of nodes in G(j, k); if p(i, k)=y. ...,y then
p(i, k) x {j} denotes the sequence of nodes ik 2 i)s-oo (e j)in G(i + 1, k).

It is clear from Fig. 1 that if p(i, k) is a basic path, so is p(i + 1, k). Furthermore,
if p(ik) contains m(i k) vertices, then m(l,k)=1 and m(i+1,k)=
2m (i, k)+ (3 + k). We can prove by induction that mi,k)y=@A+k)2""'-3+k).

By a restricted node sequence for G (i, k) we mean a sequence L of nodes such
that every basic path in G(i, k) ending at f(i,k)is a restricted node sequence. Let
1(i, k) be the minimum number of nodes in a restricted node sequence for G (i, k).

Lemma 1.5, I(ik)=( - D)(@+k)- 277 +1.

Proof. First we show

(a) I(1,k)=1,

(b) I(i+1,k)=21(k)+m(i,k)+2+k
Clearly (a) holds. To prove (b), suppose L is any restricted node sequence for
G(i+1,k). Then L contains as disjoint subsequences restricted node sequences
for the two copies of G (i, k) contained in G(i +1,k). Let L, be the restricted node

sequence for
G(ik)x {1} = (NG k) x {1} {(y, D, (2. D): (3.2) € ALK

which ends carliest in L. Similarly, let L, be the restricted node sequence for
G(ik)x {2 = (N X {21, {((» 2, (2.2)): (v,2) € AL KD

which ends earliest in L.
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For each basic path in G(i, k) which ends at f(i, k) there is a basic path in
G (i + 1, k) consisting of a copy of this path in G (i, k) % {1} followed by u(i + 1, k)
followed by a copy of p(ik) in G(@,k)x{2} followed by
w(i+1,k),x(i+1,k1),...,x(i +1,k, k). Thus the last node in L, must be fol-
lowed in L by u(i +1, k) copies in G (i, k)X {2} of the nodes in p(i, k), w(i + 1, k),
x(i+1,k1),..., and x(i + 1, k, k). Similarly the last node in L, must be followed
by s(i+1,k), copies in G(ik)x{l} of the nodes in p(ik), v(i+1,k),
x(i+1,k1),..,and x(i + 1, k, k).

Thus L consists at least of L,. L, and m(i.k)+2+ k additional nodes
[ui+1,k), m(i,k) nodes in G(i,k)x{2}, w(i+1,k), x(i+1,k1),...
x(i+1,k k) if L, ends after L., s(i+1,k), m(i,k) nodes in G(i k)x{1},
v(i+1,k), x(( +1,k,1),....,x(i + 1,k, k) if L, ends after L,]. This gives (b).

Using (a) and (b) we can prove the lemma by induction:

I()=1=0)4+k)- 27+ 1,

I+ 1,k)=21(,k)+m(i,k)+2+k
22(i, k) +(4+ k)2 -1
Z(-1)@+k)2 2+ @+ k)2 -1
=i(d+ k)27 +1.

Th.eorem 1.6. Forinfinitely many n, there are reducible flow graphs with n nodes (all
of in-degree and out-degree two or less) having no weak node sequences of length less
than tnlog,n — O(nloglog n).

Proof. For each n of the form n = (6+ )2 = (5+ i), G(i, i) is a reducible flow
graph satisfying the conditions of the theorem. No weak node sequence for G (i, i)
has length less than

i, )= —1)4+ )27+ 1.
Since 27'=(n +5+i)/(6+ i),
£(i, i)z%n%%%(i - 1)2%71—0—:-2)({ -1)
=1ni—O(n).
Also.
i—1=logfn + (5+1i)]—log(6+i)
- =log,n ~ O(loglog n).
Hence
IG,i)y=inlog,n — O(nloglog n)
and the theorem holds.
Thus the Aho-Ullman bound is tight to within s constant factor.
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2. Non-reducible flow graphs with long node sequences

We will construct a family of non-reducible sparse graphs which have long weak
node sequences. First we show that we can use graphs with long strong node
sequences and high in-degree and out-degree for our examples. Let G be any flow
graph. Let G’ be constructed from G using the following rule.

(a) Delete each arc (v, w) of G and replace it by a new node x and two new arcs
(v, x) and (x, w). Repeat until all of G’s original arcs are replaced.

Any clementary path v, v, ..., 0 of G corresponds to (and is contained as a
subsequence in) some basic path vy, X1, 02, Xz, - . Ve-15 X1, Uk of G’. This fact gives
the following lemma.

Lemma 2.1. Let G be a flow graph with n nodes and e arcs. There is a flow graph G’
with n + e nodes and 2e arcs such that any weak node sequence for G' is a strong
node sequence for G.

Let G" be formed from G’ using the following two rules:

(b) For each node v with three or more exiting arcs, say (v, a). (v, b), (v,¢),
delete two of these arcs, say (v, a) and (v, b), and replace them by a new node x and
three new arcs (v, x), (x, a), (x, b). Repeat until all nodes have out-degree two or
less.

(c) For each node v with three or more entering arcs, say (a, v). (b, v), (c,v),
delete two of these arcs, say (a, v) and (b, v), and replace them by a new node x and
three new arcs (v, x), (x, a), (x, b). Repeat until all nodes have in-degree two or less.

Any basic path of G’ corresponds 1o (and is contained as a subsequence in) some
basic path of G". This gives the next lemma.

Lemma 2.2. Let G be a flow graph with n nodes and e arcs. There is a flow graph G”
with at most n + 3e nodes and 4e arcs. such that all nodes of G" have in-degree and
out-degree at most two, and any weak node sequence for G" is a strong node sequence
for G.

The next result is crucial to the construction. Let G = (N,, A,) be a graph with a
distinguished start vertex s anda distinguished finish vertex f. By a doubly restricted
node sequence for G we mean a sequence L of nodes such that every elementary
path in G starting at s and ending at f is a subsequence of L. Every strong node
sequence for G contains a doubly restricted node sequence. Let H =(N,, A;) be
any other directed graph. Let G® H = (N, A;) be the directed graph given by

N;= N, X N,,
A= {((x ) (5 2): (5 )€ Ay z € NFU{((fy). (5, 2): (3. 2) € Ask

Theorem 2.3. Let I, be the minimum: length of a doubly restricted node sequence for
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G. Let I, be the minimum length of a strong node sequence for H. Then every strong
node sequence for G® H has length at least |, - I,

Proof. Let L = w,, w,,..., w; be any strong node sequence for G® H. From L we
derive a strong node sequence Ly for H. Each node in L will correspond either to
one node in Ly or to no nodes in L.

We define a sequence z,, ..., z; from left-to-right. Suppose z, ..., z;-; have been
defined. Consider w, = (x,z) and let w, = (y, z) be the node in L with i <}j, i
maximum, such that z, = z (let i =0 if there is no such w;). Let z; = z if the
subsequence of L from w,., to w; (inclusive) contains a doubly restricted node
sequence of

G x{z}= (N x{z},{((4, 2), (v, 2)): (, v) € AL}).

Otherwise let 2z, = 8.

The sequence z,, ..., z; contains nodes from H and occurrences of 8. Let Ly be
formed from zi,...,z; by deleting all occurrences of #. Each node in L, corre-
sponds to a subsequence of L which is a doubly restricted node sequence for some
copy of G. By the construction all these subsequences are disjoint. Thus, if I’ is the
length of Ly, [ =1,-1".

Now all we must show is that L is a strong node sequence for H. Let x, ..., x«

be any elementary path in H. Recursively define indices ay, b, @z, b, .. ., ai, be as
follows:

a; =1,

ai = b-‘ + 1,

b. is the first position j such that the subsequence of L from w,, to w; (inclusive)
contains a doubly restricted node sequence of G x {x.}.

If it were not possible to define all the a,, b, then we could construct from x,, ...,
x. by replacing each node x, with an appropriate path from (s, x:) to (f,x;) in
G x{x;}, a path in G® H which was not a subsequence of L. But L is a strong node
sequence for L. Thus all the a, b, can be defined. But by the construction of

Zy, ..., 2, some z; with a, <j < b, must have z; = x. This is true for each i; thus
X1, - .., X Is a subsequence of L,. Hence L,, is a strong node sequence for H, I’ = [;,
and | =1, ;.

Now we construct a family of non-reducible sparse graphs H(i). Each H(i) will
have a distinguished start node s, and a distinguished finish node f. Let H(i)=
(N(i), A(i)) be defined recursively by the following rules:

N ={s}, A()=0, fi=s,
NG +1)= (N@)x{1,2,.., 2D U s, firrh
A+ D) ={(y.))(2)): (. 2) E A(i) and 1<) =21}
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U{(sion (50 ) T j <2}
U j) fin): 1 j <21}
U j) (s k) 1sj=<20 1<k <2'}.

Let n(i)=|N,[and a(i) = | A, |. The following equalities are immediate from the
definitions above:

n()=1, n(i+1)=2n(i)+2,
a(1)=0, a(i+1)=2‘a(i)+221+2.‘+|.
Let m(i) = 2% m(i) is defined recursively by m(1)=1, m (i + 1) = 2'm i).

Lemma 2.4, There are positive constants ¢,, ¢, such that n(i)< c,m(i), a(i) <
cam (i) for all i.

Proof.
a(i+1) _2a(i)+2%+2"' a(i) 2'+2
m@+1)" 2'm (i) m(i) m(i)
_M i 4]
= m(i)+(2 +2)/29.
Thus

ﬂQ<M+i(2: +2)/2“LI$C:

m(i)  m(l)

for a suitable constant c.. A similar argument works for n(i).

Lemma 2.5. Let (i) be the minimum number of nodes in a doubly restricted node
sequence for H(i). Then [{i)= c;n (i)’ for some suitable positive constant c;.

Proof. The graph H(i + 1) contains as a subgraph the graph H(i)® C(2'), where
C(2') is the complete directed graph on 2' vertices. Furthermore, every elementary
path in H(i)® C(2') is a subsequence of an elementary path in H(i + 1) starting at
s.-, and ending at f.,. By Theorem 2.3 and the Kwiatowski-Kleitman result [5],
picking ¢ = i, there is a positiver constant ¢, such that I(i + 1) = (2% ~ ¢, 2"™®)I(i).
Then
IG+1) (2% = c2™)1()
mG+DF " 2mG)

Thus for any i, <,

it (11 #)mp- (A0 -5)ms

=(ILL 5] e

2 {m (iO)]z '

=i f=io
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Choose i, such that ¢,/2** <! Then

= CJ ”_ - Cl — = - _l & *
[ [1-5] =5 5 n[i-5]= 5.5-4(5)

J=iw8 1 =8
=8 i _ Ca
= P
iSam 2
= - 16.

Thus

1) e (i) S
(P g 1O em )]

for all i > i, and a suitable positive constant cs. Using the fact that /(i) is always
positive and applying Lemma 2.4 gives the desired result.

Theorem 2.6. For infinitely many values of a, there exists a graph H with a arcs such
that H has no strong node sequences of length less than cea’?, for a suitable positive
constant cs.

Proof. Immediate from Lemma 2.5.
Lemmas 2.1 and 2.2 give the following corollarv.

Corollary 2.7. For infinitely many values of n, there is a graph with n nodes (all with
in-degree and out-degree bounded by two) such that no weak node sequences of the
graph have length less than c,n’, for a suitable positive constant c,.
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